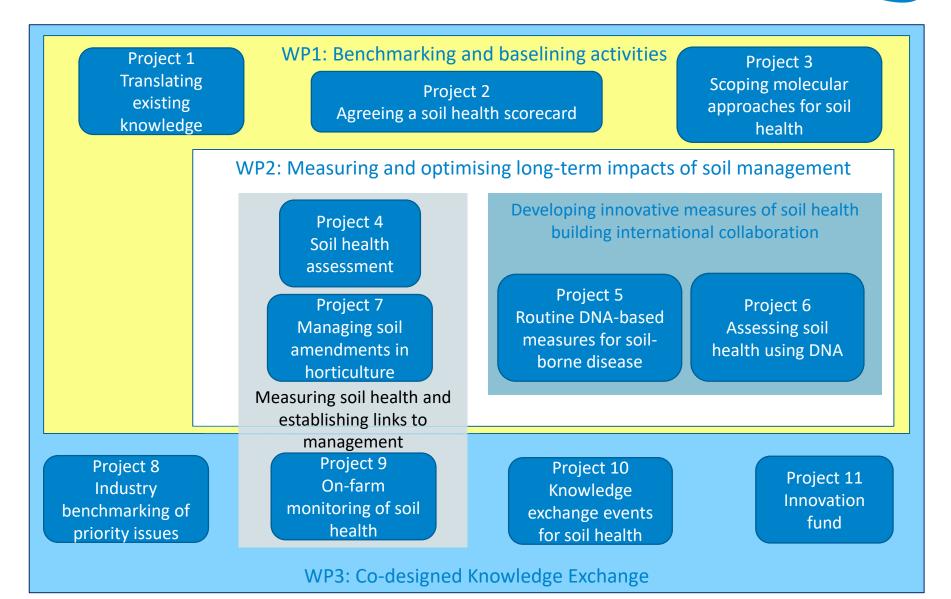


Improving Soil Health; Potential Impact on Yield

Dr Simon Bowen

Soil Biology and Soil Health Partnership Research and Knowledge Exchange



What will the partnership do?

- Five years to deliver linked knowledge exchange and research on soil biology and soil health
- Improve on-farm understanding of soil health by sharing current academic and industry knowledge in usable formats
- Developing and validating indicators of soil biology and soil health in research trials and onfarm
- Building on work already carried out

All Year 1 work complete and reported

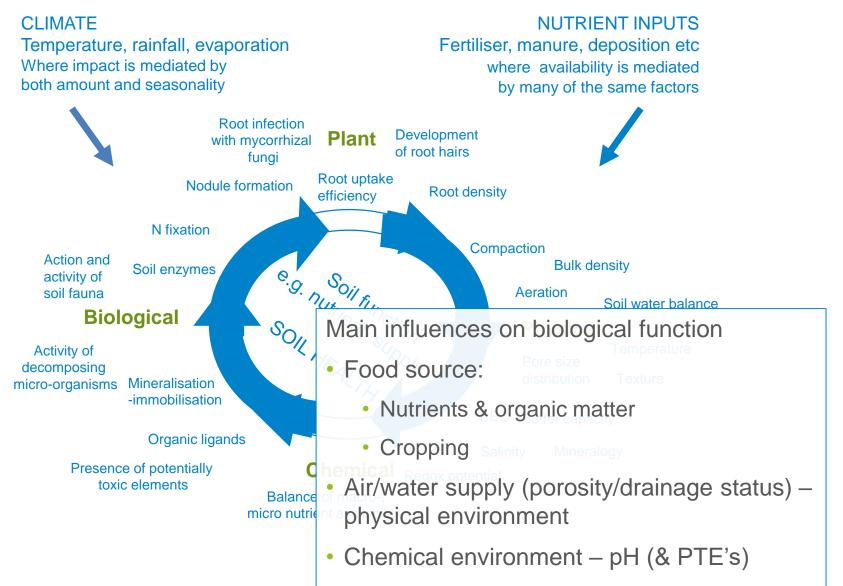
- Literature review
- Industry consultation

www.ahdb.org.uk/greatsoils
or
https://cereals.ahdb.org.uk/shp

All land is unique

May have similar constraints

But not the same field by field or even within a field


2:

1.

Soil type sets inherent limits to physical properties

Management modifies properties

Biological

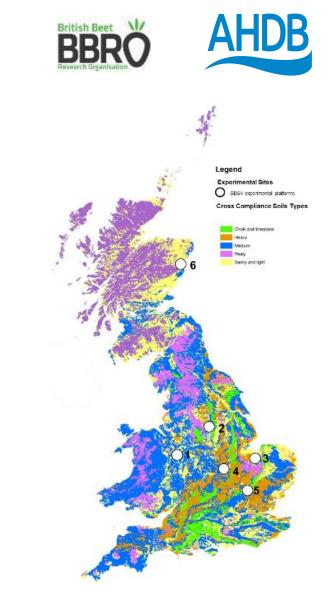
- Feed the soil regularly through plants and OM inputs
- Move soil only when you have to
- Diversify plants in space and time

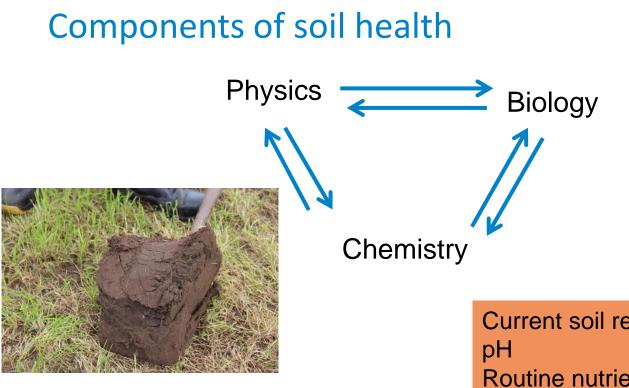
KNOW YOUR SOILS; principles to improve soil health

Chemical

- Maintain optimum pH
- Provide plant nutrients right amounts in the right place at the right time
- Know your textures and minerals
- buffering capacity, free supply!

Physical


- Know your textures and understand limits to workability, trafficability
- •Optimise water balance through drainage if necessary
- •Improve soil structure effective continuous pore space


P4 Soil health assessment sites: Arable & ley/arable rotations

- 1. Harper Adams
- 2. Terrington
- 3. Gleadthorpe
- 4. Loddington Tillage
- 5. Boxworth Drainage
- 6. Craibstone
 - a. Crop rotation x fertiliser; 90+yrs
 - b. Crop rotation x pH; 60+yrs.

10-20 yrs of repeated organic material additions

Putting it all together will need a different approach to sample collection – linking physical observation and soil samples sent for testing

Current soil reports Routine nutrients

GREATSOILS Soil Health Assessments

- Timing: post harvest/pre-cultivation
 - Soil needs to be moist, so sampling may need to be delayed to post-cultivation/drilling of winter crops, but leaving a gap of at least 1 month post soil disturbance (& c. 3 months since organic material additions).

Measurements:

- Bulk soil sample for:
 - Chemistry: NRM soil health index; SOC & total N; potentially mineralisable N
 - Biology: earthworms, microfauna, nematodes; microbial biomass/respiration
 - DNA/eDNA (projects 5 & 6) co-ordinated by FERA
 - Physics: VESS, Bulk density, penetrometer resistance
 - Archive sample
- Establish relations with:
 - Yield & crop quality
 - Disease & weeds

FYM treated plot

Control plot

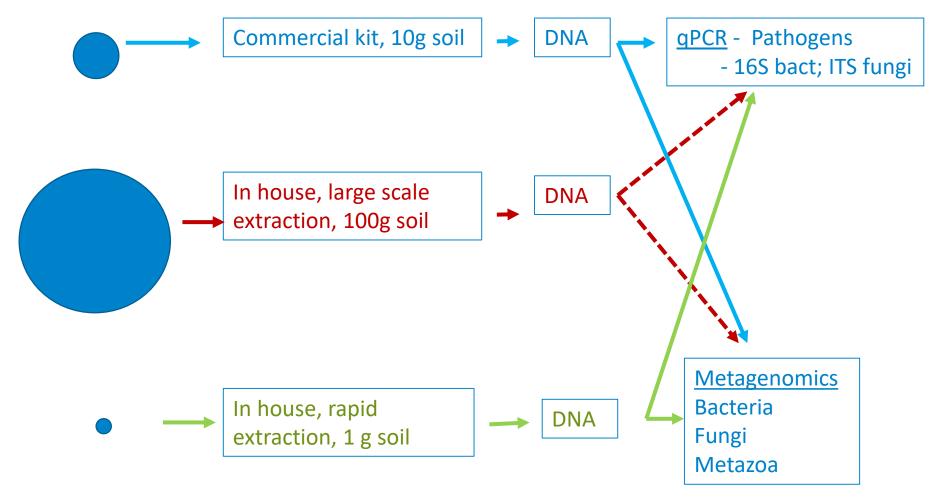
Initial 'scorecard' results

Samples taken October 2017 in 2 year G/C ley before spraying & cultivation for WW in 2018

Attribute	Control	FYM (23yrs)	Slurry (23 yrs)	Green compost (13 yrs)	Green/food compost (6 yrs)	Food-based digestate (9 yrs)	Ρ
рН	6.4	7.0	6.4	7.0	6.2	6.5	<0.001
Ext. P (mg/l)	56	73	53	60	59	65	<0.05
Ext. K (mg/l)	80	311	194	187	140	167	<0.001
Ext. Mg (mg/l)	44	87	75	63	66	48	<0.001
LOI (%)	3.0	4.1	3.6	4.0	3.7	3.4	<0.01
Bulk density (g/cm ³)	1.40	1.34	1.40	1.29	1.46	1.43	NS
VESS score	1.2	1.4	1.3	1.1	1.3	1.5	NS
Microbial biomass (mg/kg)	598	671	537	534	574	592	NS
PMN (mg/kg)	29.8	90.2	23.8	43.1	37.7	45.5	<0.01

High risk – need to investigate urgently

Moderate risk – need to investigate further


Project 5+6 – Assessing soil health using DNA

- Can we replace many of the biological assays with analysis of a single DNA sample
- Issues being addressed initially representative sample size, cost and interpretation
- Sample size and cost being evaluated in a comparative experiment (details on next slide)
- Interpretation by analysing the same samples as the 'traditional' assays.

Outline of comparison experiment

P9 On-farm soil health assessment:

Valuing and working with farmer innovation developing locally adapted practices

Thank you Questions?

Long term tillage and amendment experiments and on farm trialling

David Clarke | Soils and Farming Systems Technician

David.Clarke@niab.com

- - Water

Soil amendments experiment

3 rotations

- 1. Spring breaks
- 2. Spring breaks + cover crop
- 3. Cont. Wheat (spring breaks 2018 onwards)

With or without 35t ha of compost (applied annually between 2008 and 2011)

The New Farming Systems Experiments

JC Mann Trust

Long term (2007-present) set of trials at Morley, Norfolk (medium, sandy loam soil)

Delivered through NIAB TAG supported by the Morley Agricultural Foundation and The JC Mann Trust

Rotations experiment

3 Rotations:

- 1. Winter cropping
- 2. Spring cropping
- 3. Mixture of the two

4 cover crop treatments

- 1. standard practice (stubble)
- 2. legume (clover) bi-crop
- 3. legume mix cover crop
- 4. non legume cover crop

N strategies

- 1. no nitrogen (N)
- 2. 50% standard N dose
- 100% of standard N dose (220kg/ha WW)

0% 50% 0% 50%

100%

Cultivations experiment

4 cultivation systems

- 1. Plough
- 2. Deep non-inversion (20cm)
- 3. Shallow non-inversion (10cm)
- I. Managed approach

Stubble or autumn cover crops ahead of spring crops (companion crop in WOSR rape)

NFS Cultivation experiment

4 cultivation systems (plough, deep and shallow non-inversion and managed) ± autumn cover crops ahead of spring sown crops

		Year 2 (2009)	Year 3 (2010)			Year 6 (2013)				Year 10 (2017)	Year 11 (2018)
Winter rotation	ww	wosr	ww	wbn	ww	wbrly	wosr	ww	woats	ww	wbrly

Long term yield and margins (all crops)

	Relative yield (to ploughed approach)	Cumulative gross margin minus machinery cost (£/ha)	Relative margin (to ploughed approach)
Plough	100	4823	100
Managed	99	5138	107
Deep	97	5150	107
Shallow	92	4929	102

NEW FARMING SYSTEMS

Evaluating cultivation approaches

The New Farming Systems (NFS) project is a series of experiments and system demonstrations. The project aims to explore ways of improving the sustainability, stability and output of conventional arable farming systems. The research is being undertaken on a sandy loam soil at Morley in Norfolk

Sustainability Trial in Arable Rotations (STAR)

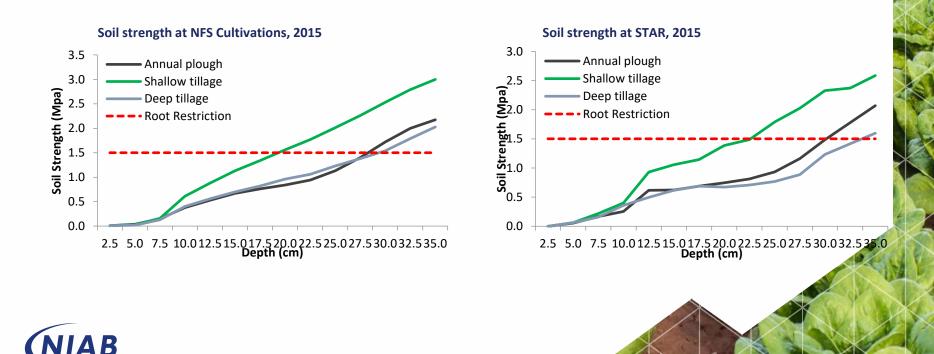
STAR Project

- 2007-present (14th year of cropping)
- Clay loam (heavy soil), Otley in Suffolk

Cultivations- Plough, shallow non-inversion (10cm), deep non-inversion (20cm), managed approach

Rotation	2006 (Yr 1)	2007 (Yr 2)	2008 (Yr 3)	2009 (Yr 4)	2010 (Yr 5)	2011 (Yr 6)	2012 (Yr 7)	2013 (Yr 8)	-	2015 (Yr 10)	2016 (Yr 11)	2017 (Yr 12)	2018 (Yr 13)
Winter	WOSR	Wheat	Wbeans	Wheat	WOSR	Wheat	WBeans	Wheat	WOSR	Wheat	WBeans	Wheat	2 nd Wheat
Spring	Sbeans	Wheat	SOats	Wheat	SBeans	Wheat	SLinseed	Wheat	SOats	Wheat	SBeans	Wheat	2 nd Wheat
Cont. wheat	Wheat	Wheat	Wheat	Wheat	Wheat	Wheat							
Alt fallow	Fallow	Wheat	Fallow	Wheat	Fallow	Wheat	Fallow	Wheat	Fallow	t Wheat	Fallow	Wheat	2 nd Wheat

STAR Project yields and margins


Yield as % plough in each rotation and cumulative margin, £/ha 2006-2017

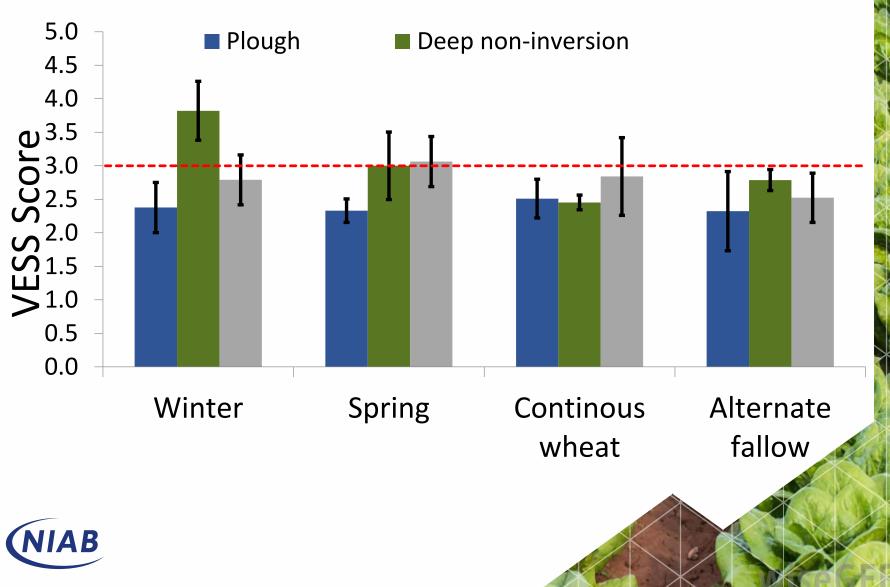
Relative yield (%) (<i>cf.</i> plough)								
	Winter	Spring	Cont. Wheat	Alt Fallow	Average			
Plough	100	100	100	100	100			
Deep	90 (<i>99</i>)	96	98	100	96			
Shallow	95	89 (<i>94</i>)	101	99	96			
		Cumulative m	argin (£/ha)					
Plough	7380	4688	4892	4028	5247			
Deep	7319 (<i>7678</i>)	4920	4990	4322	5388			
Shallow	6772	4865 (<i>5185</i>)	5462	4251	5337			
Average	7157	4824	5115	4200	-			

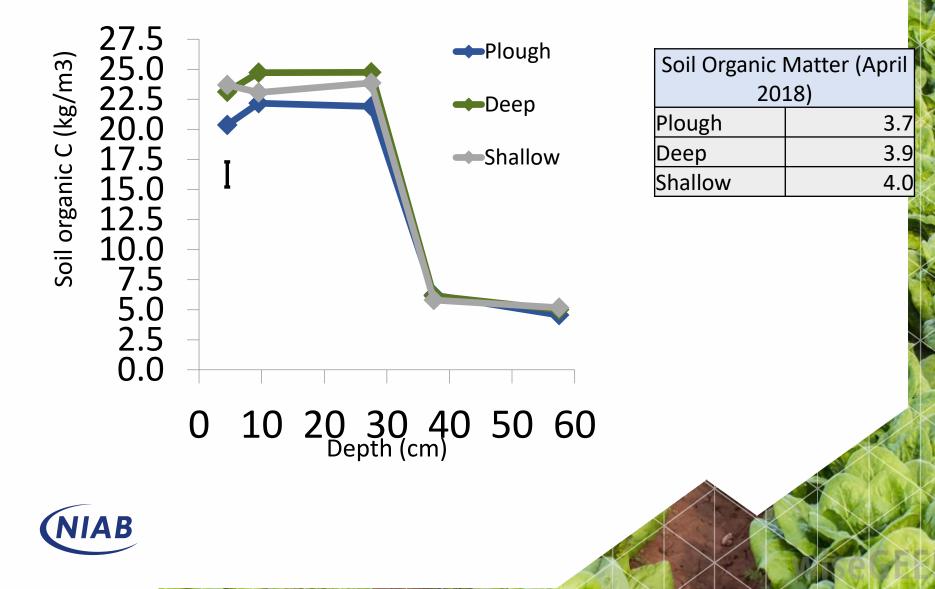
Soil physical properties- Penetrometer

At STAR and NFS we have seen slightly tighter soils with the shallow non inversion although across seasons this only marginally exceeds 1.5 Mpa

Soil physical properties- VESS (STAR)

Plough


Deep non-inversion


Shallow non-inversion

Soil physical properties- VESS (STAR)

Soil chemical properties-Soil organic C (STAR)

Plant Science into Practice

Manure and Organic Replacement Experiment (MORE)

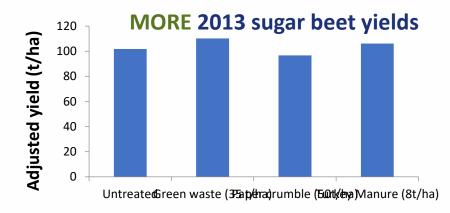
 Measure the development and diminution of soil and crop benefits from the application of selected soil amendments within a farm rotation

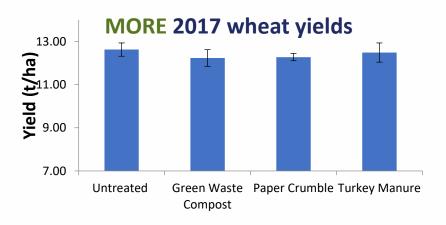
(Year 1)	(Year 2)	(Year 3)	(Year 4)	(Year 5)	(Year 6)	(Year 7)
2012	2013	2014	2015	2016	2017	2018
ww	S beet	Peas	ww	OSR	ww	S beet

Plant Science into Practice

2018 through tramlines

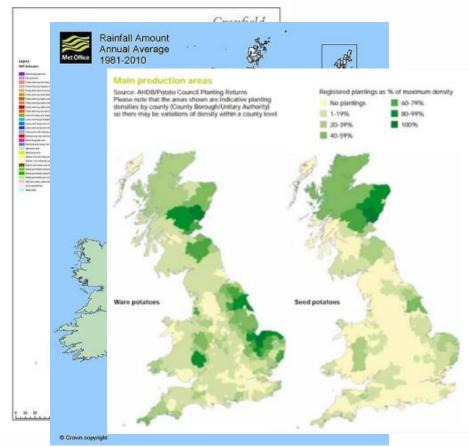
Plant Science into Practice


2018 Agricultural drought



Manure and Organic Replacement Trial (MORE)

Differences in 2018 vigour



On Farm Trialling

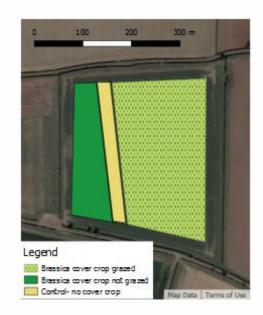
When performed correctly split field trials can be a useful farm specific decision making tool

Why?....UK Farming is diverse!

We all have different

- Soils
- Weather
- Weed and pest pressures
- Rotation
- Machinery
- History

If you are considering implementing a change in your farming system all these aspects should be considered!



Split field trials influencing farm practice

Trial: The use of a grazed brassica cover crop in front of sugar beet

Location: Holkham Estate (light soil)

Conclusion: No recordable negative impact on plant populations and yield + potential benefits in reducing over winter leaching and N capture

N retention: winter 2017

	Grazed Cover crop	No cover crop
Soil N (kg N/ha)	10	22
Crop (kg N/ha)	55	-
Total N (kg N/ha)	65	22

Crop establishment: spring 2017

	Grazed Cover crop	No cover crop
Plant population ('000/ha)	91.6	86.2
Crop GAI	0.65	0.60
Yield (t/ha)	57	55

Setting up a trial - Field

- Big enough and of reasonably uniform shape
- A good history of cropping and management

-Yield maps (Most important tool!)

-Soil scans

-Satellite images

- Doesn't mean you need your best field Some of your worst fields may;
 - Have less risk/bigger gains
 - Require a change in management practice
- Make sure treatments are simple, relevant and comparable - Must have a control (farm standard)

Assesse the impacts of what you are testing

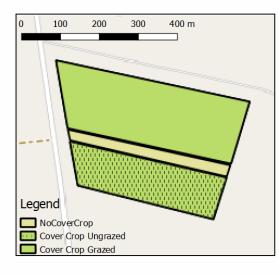
Weather

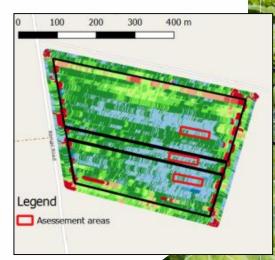
<u>Productivity</u> (Yield, Grain Quality) <u>Agronomy</u> (plant/tiller numbers, green area Index, disease, pest damage, weed pressure)

Biology Worm numbers, CO² efflux, slug traps <u>Chemistry</u> Soil N, P, K, Mg and Organic Matter

Physics

Visual Assessment of Soil Structure (VESS), dry bulk density, water infiltration, soil moisture content, aggregate stability




Assessments

- Use previous yield maps to identify similar performing areas within each treatment
- Compare good areas with good and bad with bad
- The more assessments you perform the stronger your conclusions

Assessment area yields (t/ha) 2017					
(before intervention)					
No Cover Crop 11.96					
Cover Crop Grazed 11.99					
Cover Crop not Grazed	Crop not Grazed 12.11				

Yield and Margins

Yield

- Ensure combine yield mapping software is accurately calibrated
- Carefully plan your harvest
 - Pre determined full header width cuts, avoiding tramlines
 - individual yield maps for the trial and rest of the field can be useful
- If yield mapping software and/or the capability to analyse this data is not available then weigh a known area (e.g. 3 x 70m cuts) from each treatment over a weigh bridge
- Split field trials can 'prove' grain yield difference of 0.3-0.5 t/ha (ADAS, 2018)

NO difference can be a important finding!!!

Margins (yield is not everything)

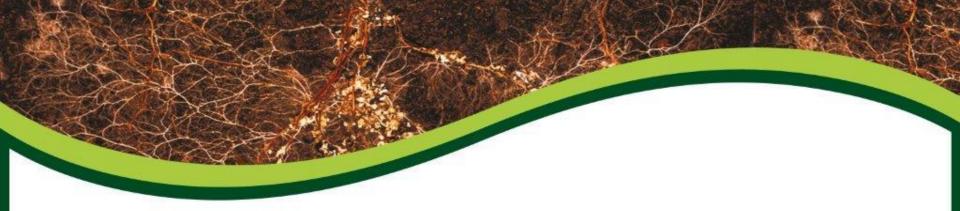
Keep a record of the costs associated with the different systems – Seed, NIABts, work rates etc

Thank you!

Acknowledgements

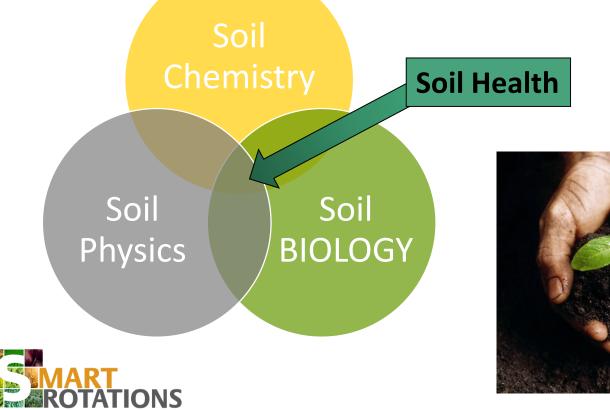
Jamie Stotzka PlantWorks Ltd.

Use of selected Microorganisms in Agriculture A Tailored Method for Improved Plant Productivity



Healthy soils and farming

- Beneficial microbes in agriculture Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR)
- PlantWorks trials

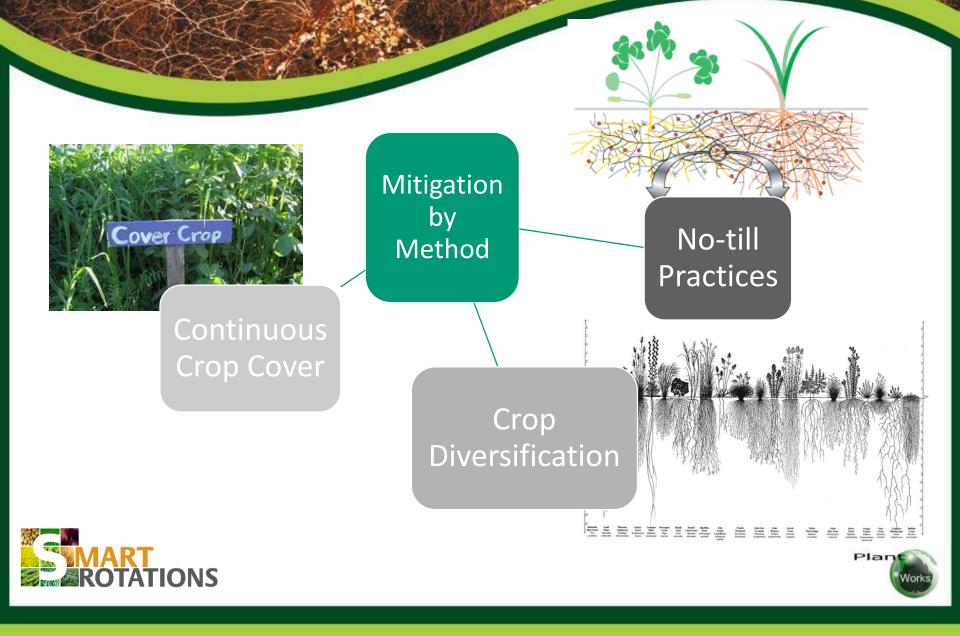

Soil Health and Faming Systems

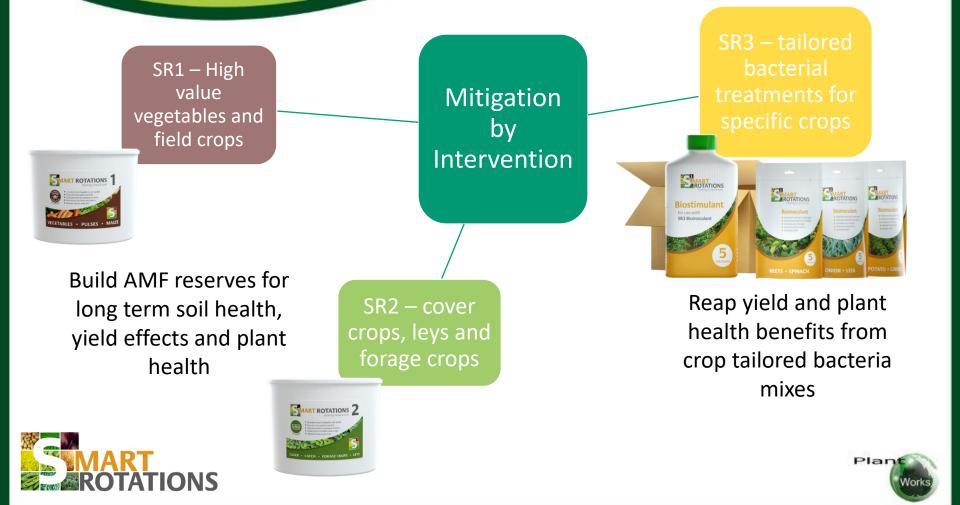
Soil Health

"Healthy soils are the foundation and future of sustainable farming."

AHDB Nutrient Management Guide (RB209), Section 1, page 6:

"Sources of inorganic nutrients are limited and manufacture of fertilisers requires energy, so recycling of nutrients through organic materials and improving nutrient availability from well-structured biologically active soils makes better use of resources and economic sense."


ROTATIONS


a Natural ecosystems **b** Agricultural ecosystems Plant species Soil type Plant species Soil type Biotic Agricultural Biotic Agricultural interactions practices interactions practices Plant diversity Plant diversity Climate Climate

Nature Reviews | Microbiology

Philippot et al., 2013

Beneficial Soil Microbes

Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth Promoting Rhizobacteria (PGPR)

Two Types of Beneficial Microbes – A Wealth of Benefits

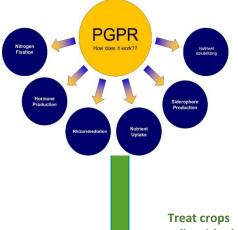
Arbuscular Mycorrhizal Fungi

– AMF

No colonization Multiple of the series of t Agricultural practices can lead to depletion of soil biology

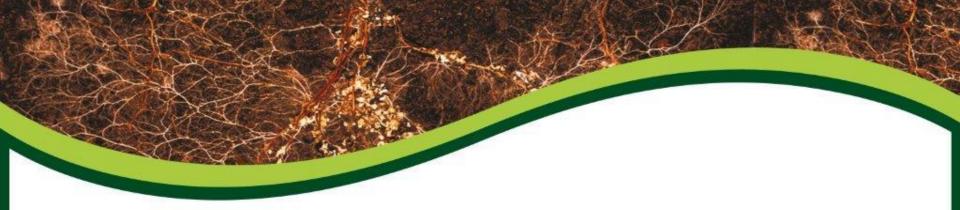
Treatment of soils and crops with high quality inocula can help mitigate these negative effects

Treat soils with AMF to build up a healthy fungal network for all host-plants and years of benefits


ROTATIONS

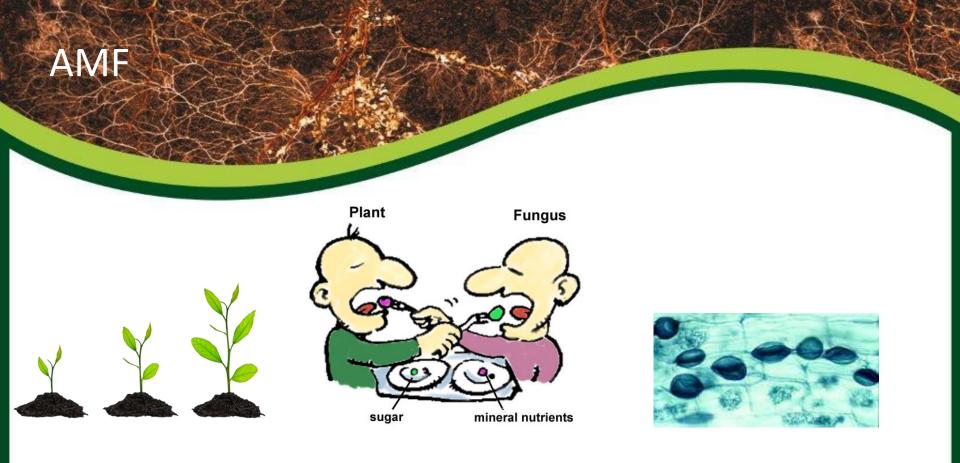
Benefits for Host Plants Improved nutrient availability and uptake Increased crop quality and yield Improved systemic resistance for healthier plants Increased drought tolerance and water use efficiency

Plant Growth Promoting


Rhizobacteria

- PGPR

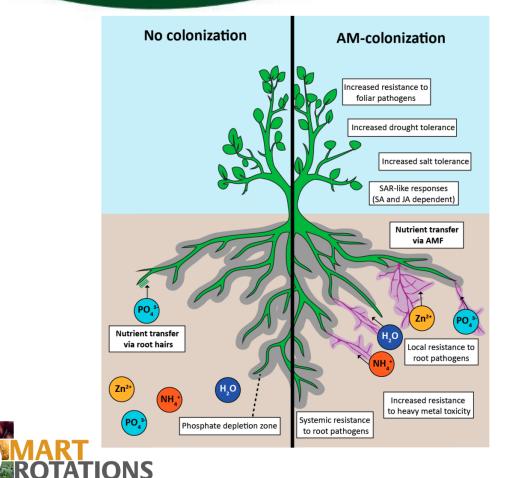
Treat crops annually with plant specific tailored PGPR for yield and health benefits



Arbuscular Mycorrhizal Fungi

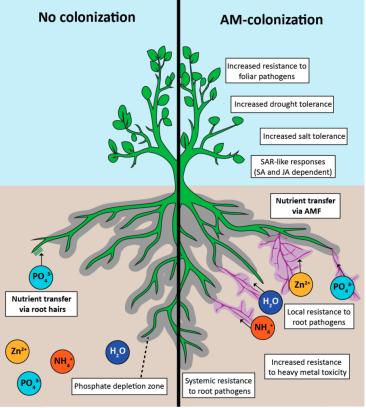
AMF

Mineral nutrients and water extracted from the soil



Organic carbon compounds transferred to fungus

Arbuscular Mycorrhizal Fungi - AMF



Benefits for Host Plants

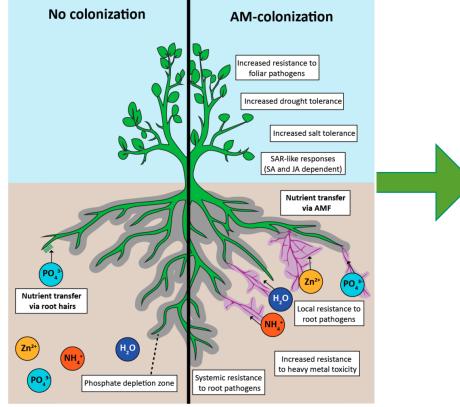
- Improved nutrient availability and uptake
- Increased crop quality and yield
- Improved systemic resistance for healthier plants
- Increased drought tolerance and water use efficiency

Arbuscular Mycorrhizal Fungi - AMF

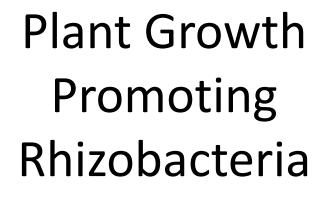
Agricultural practices can lead to depletion of AMF

- Soil disturbance
- Fallow periods
- Non-mycorrhizal

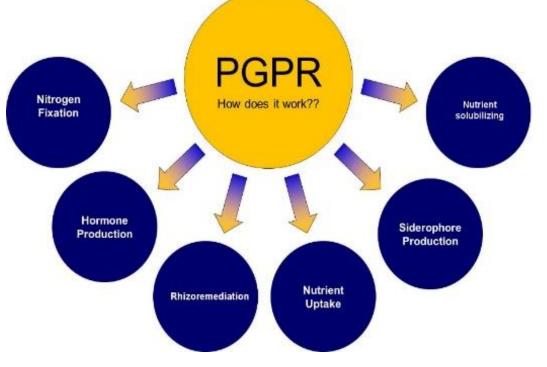
crops –Brassicaceae,


Ameranthaceae

Pesticides


Arbuscular Mycorrhizal Fungi - AMF

Treat soils within arable rotation with AMF to build up a healthy fungal network for all host-plants and years of benefits

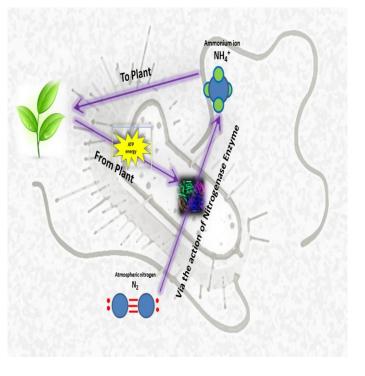


PGPR

Plant Growth Promoting Rhizobacteria - PGPR

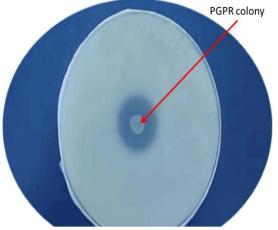
Plant Growth Promoting Rhizobacteria - PGPR

Treat crops annually with plant specific tailored PGPR for yield and health benefits



Plant Growth Promoting Rhizobacteria - PGPR

Increasing plant available nutrients


Biological nitrogen fixation

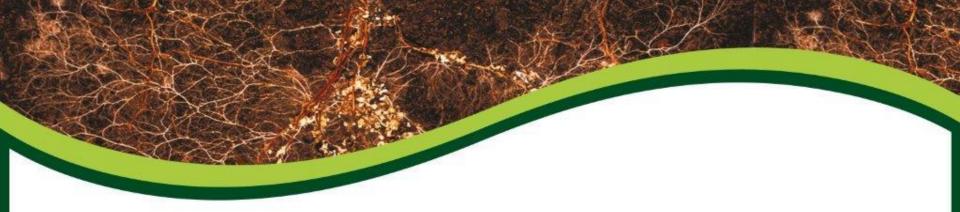
- Over 78% of the atmosphere is gaseous N₂.
- Not usable by plants.
- PGPR enzymes to convert the atmospheric N₂ into plant available NH₄⁺
- 74,000 tonnes of N₂ is available for fixing in the air above each hectare of land
- Fixed nitrogen from the bacteria is exchanged for phostosynthesised carbon and other organic nutrients from plants

Plant Growth Promoting Rhizobacteria - PGPR

Phosphate solubilising halo produced by a PGPR on a medium agar containing insoluble phosphate

Phosphate solubilisation

- **P** is very **immobile**
- Soil microbes release organic acids
- Organic P is locked up in biological macromolecules (DNA and cell membranes etc.)
- Some PGP Rhizobacteria can release this organic P enzymatically
- Soil microbes can increase soil available P by 62%
- These organic molecules also chelate other micronutrients

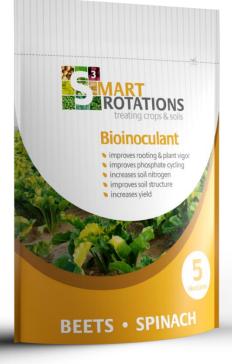

PGPR Production

- PlantWorks PGPR collection 14 species
- Cultivated as mono-species in 10L bioreactor and shakers
- PGPR identity confirmed by 16S rRNA sequencing
- Viable **cells enumerated** before and after turned into final product
- 5 years research on
 - Generating growth curves now know when to harvest cells to improve survival rate
 - Product formulation and application methods
 - Tailor consortia to specific target crops

PlantWorks

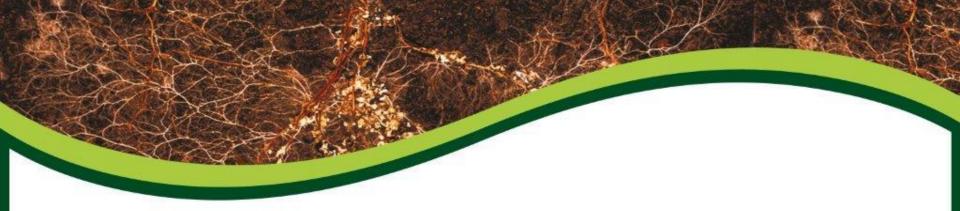
Tailoring of PGPR consortia for specific crops

Q Lin/Jamie Stotzka/Natallia Gulbis


PGPR single strains

Oats	Wheat	Barley	Linseed
F *35%	F *14%	E *3%	E *50%
E *20%	D *12%	D *1%	K *35%
A *20%	B *7%	A *4%	D *6%
	E *4%		B *5%
			A *2%
К	0	0	0
0	А	К	F
В	К	F	
D		В	

PGPR crop targeted products



Less is more...

- Trial work showed that **different PGPR** consortia need to be formulated **for each target crop**.
- SR3 liquid range developed for specific crops including Beets/Spinach, Onions/Leeks and Potatoes/Carrots available now
- Specific **SR3 cereal and oilseed products** to follow wheat and OSR trials underway.

PlantWorks

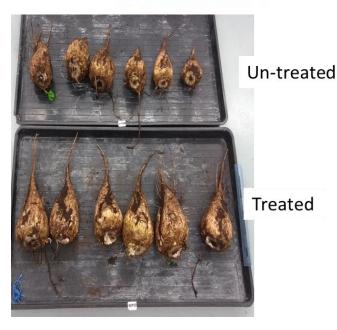
Sugar Beet Allpress Farms Ltd. Cambridgeshire

Q Lin/Jamie Stotzka

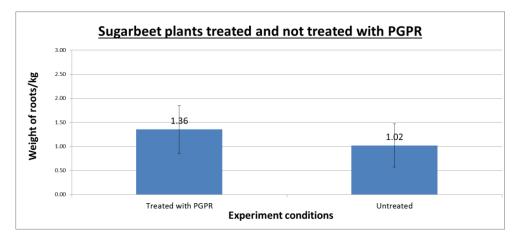
Sugar Beet

Materials and Method

- 1 hectare of sugar beet inoculated twice with SR3 Beet formulation
- Standard crop sprayer, dilution rate 200L water/ha, medium coarse droplet, low pressure settings


Assessments

- 100 beets picked at random from each inoculated and untreated areas. Beet weights taken and recorded in kg.
- Quality assessment (British sugar) to determine sugar content, Amino N, Sodium and Potassium contents.



Sugar Beet

Visual difference between treated and untreated sugar beet

Weight measurements of beets treated and untreated with PGPR.

Unpaired *t* test on beet weight between PGPR treated and untreated: P < 0.001.

Quality assessment of PGPR treated and untreated sugar beet

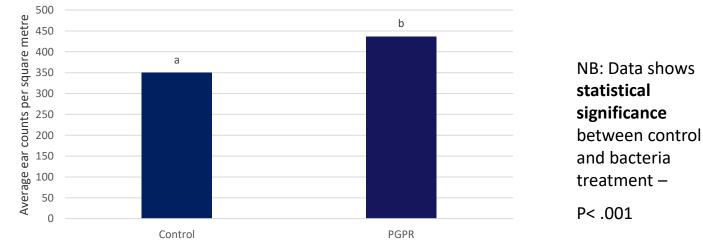
	Plot Sample Dirty Wt	Plot Sample Clean Wt	Sugar %	Amino Nitrogen (mg/100g beet)	Sodium (mg/100g beet)	Potassium (mg/100g beet)	Trial Operator	Trial Description
Sample A (PGPR)	10.7	10.3	17.52	15	25	161	British Sugar	Frontier Ag Ltd.
Sample B (Untreated)	8.2	8	16.98	15	26.2	155	British Sugar	Frontier Ag Ltd.
			3.2% increase with treatment					

Smart Rotations – Benefits of re-establishing AMF after non-mycorrhizal crops SR3 Trials 2017-18

PW Trial Personnel: Natallia Gulbis, Q Lin, Jo O'Regan, Marios Stamatiou, Jamie Stotzka

Wheat

Simon Cowell - Essex


Average ear counts per square metre

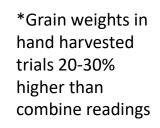
Control

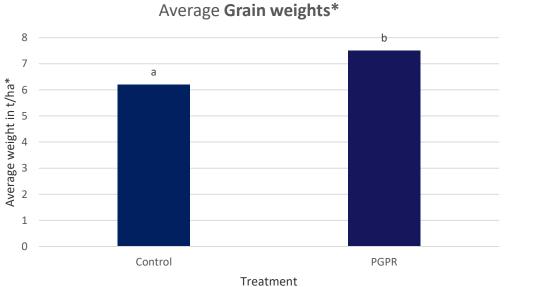
PGPR Difference

350 437 Up 20%

Average Ear Counts

Treatment



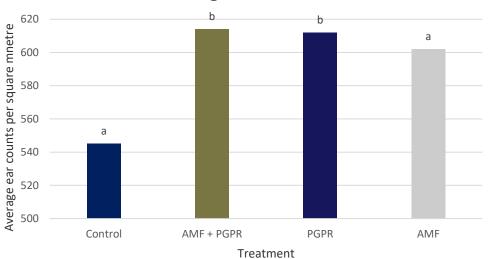


Simon Cowell - Essex

Average grain weights in t/ha*

Control	I	PGPR		Difference
	6.2		7.5	Up 17%

NB: Data shows statistical significance between control and bacteria treatment – P< .01



GH Dean - Kent

Average ear counts per square metre

Control	AMF + PGPR	PGPR	AMF
545	614	612	602

NB: Data shows statistical significance between control vs AMF + PGPR and control vs PGPR treatments

P <.05

ROTATIONS

Control vs PGPR up 11%

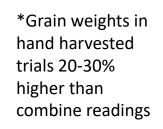
up 11%

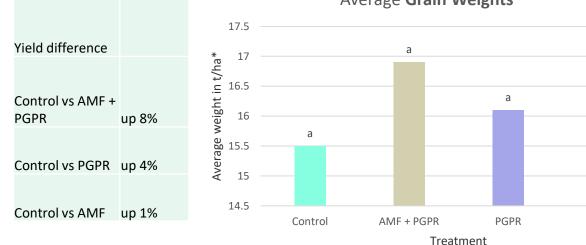
up 9%

Yield difference

Control vs AMF +

Control vs AMF


PGPR

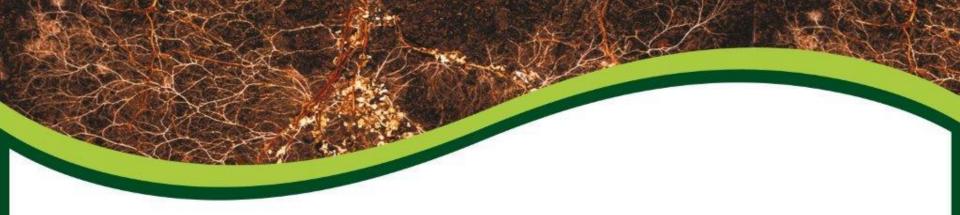


GH Dean - Kent

Average grain weights in t/ha*

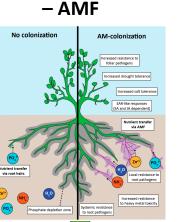
Control	AMI	+ PGPR PGF	PR AM	F
	15.5	16.9	16.1	15.6

Average Grain Weights*


NB: Data shows no statistical significance between control and microbial treatments

а

AMF


Smart Rotations Product Range and Applications

Two Types of Beneficial Microbes – A Wealth of Benefits

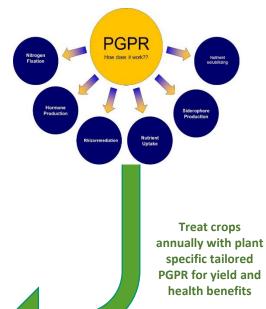
Arbuscular Mycorrhizal Fungi

Treat soils with AMF to build up a healthy fungal network for all host-plants and years of benefits

ROTATIONS

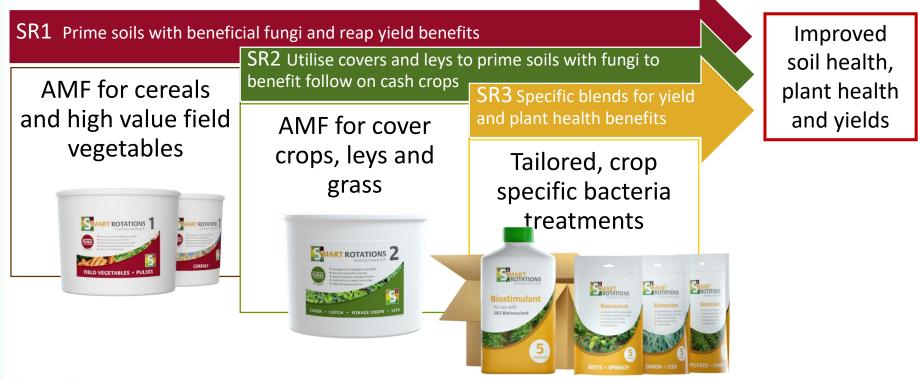
Agricultural practices can lead to depletion of soil biology

Treatment of soils and crops with high quality inocula can help mitigate these negative effects


Benefits for Host Plants

Improved nutrient availability and uptake Increased crop quality and yield Improved systemic resistance for healthier plants Increased drought tolerance and water use efficiency

Plant Growth Promoting


Rhizobacteria

- PGPR

Smart Rotations Products

- Biologically active soils support plant growth and vigour through symbiotic relationships between microbes and plants
- Farming activities can disrupt this effect
- Opting for **conservation agriculture strategies** can **support** soil-life
- Biological additives/inoculants must be carefully chosen and formulated – In many cases less is more!
- With the right formulation, inocula can positively impact yields

Thank You

Companies:

Cotswold Seeds – Paul Totterdell ProCam – Kevin Pearcy, Richard Harding Kings Seeds/Frontier AG – Paul Brown Crop Management Partners – Roger Bryan

Farmers:

Patrick Allpress, Martin Porter and Jim Thompson (Allpress Farms) **Neil Anderson** Mark Bowsher-Gibbs and staff at GH Dean/Hempstead Farm Simon Chiles Simon Cowell Simon Gardner and Charlotte Nicholls (G's Growers) Tony Wilkins

PlantWorks Science Team: Natallia Gulbis Q Lin Jo O'Regan

Allpress

Innovation Farm & Agri-tech

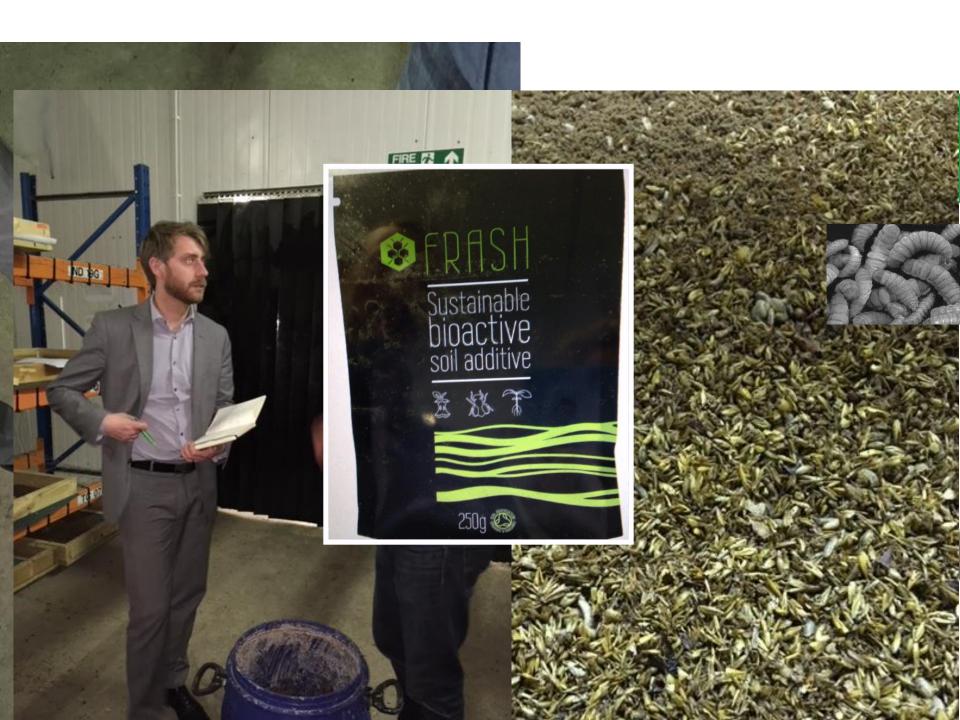
Innovation Hub, Dr Lydia Smith

Soil /crop Microbial Interactions

- Symbiotic Associations
- Farmer Participatory research
- International Soil Research Interactions

Soil – Plant - microbial inte

- Soil structure, nutrient cvcling nutrient exchange
- Pathogen interactions, s


East Agri-Tech Innovation Hub - Hasse Fen

Black vine weevil Larva

Separated spent mushroom compost is a source of chitin = insect cuticle

Ralph Noble NIAB EMR

Heuchera pot plants in unheated polytunnel

Matthews Plants Hadley Nursery Roydon, Essex

Soil (microial) Health projected 1 Soil CADRE lab

- Soil Microbial Interactions (Soil & Cover crop Associations Developing Rhizo-biological Efficiency)
- AHDB & 'Charities funded
- Examine how farming system, cropping and soil biota interact
- Glasshouse, rhizotron & lab-based
- Quantify if/how the delivery of sustainable, dynamic soil systems can be improved by enriched soil biota
- Collaboration; Dr Ute Paszkowski Cam.U

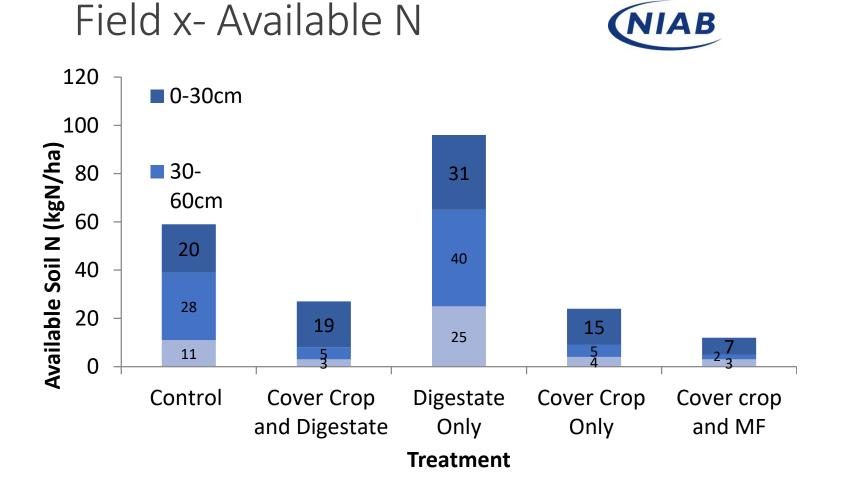
- Improving nutrient use efficiency from AD digestate allied to Cover Crops to improve longer term soil function
 - Using cover crops (4-way mix)
 - Stabilising N
 - Impact of fibre amendments
 - Application time of digestate
- Measure; NPK, micronuts, pH CEC, Yield, economics
- 6 Farmers + AD experts + Anaero Technologies & Future Biogas

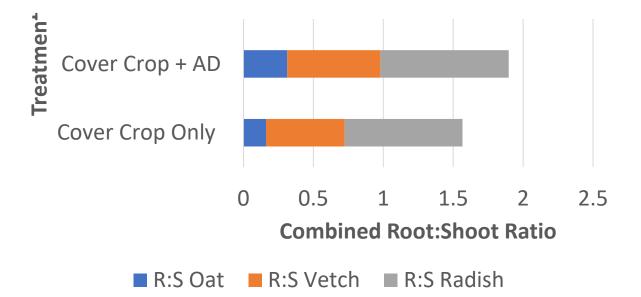
Innovative farm locations

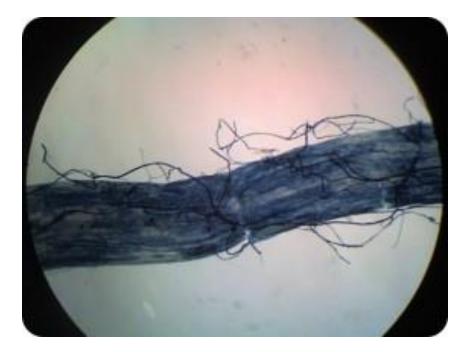
Farmer	Farm	Location	
1	Allpress Farms	PE16 6XQ	
2	Euston Estate	IP24 2QP	
3	Holkham Estate	NR23 1AB	
4	Upton Farms	IP28 6SR	
5	Boxford Farm	CO6 4PH	
6	North Moor Farm	DN17 4BX	

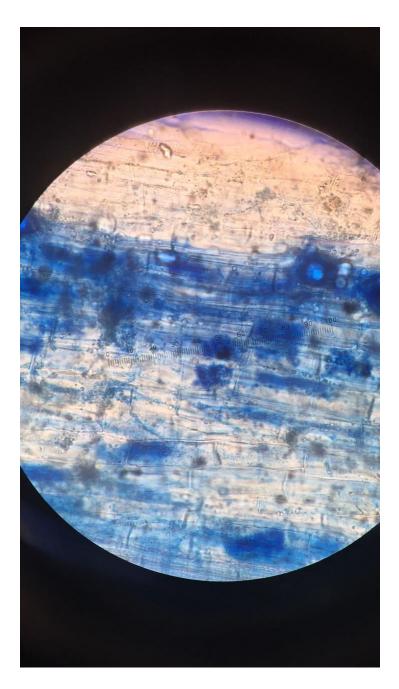
Current progress & assessments

NIAB training video https://www.youtube.com/watch?v=KKZuPKj7j9Q&feature=youtu.be

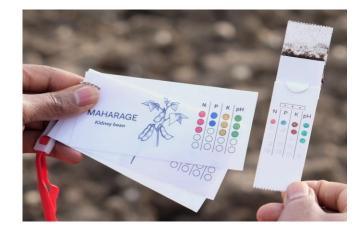

Green Area Index




Worm Counts


Structure quality	Size and appearance of aggregates	Visible porosity and Roots	Appearance after break-up: various soils	Appearance after break- up: same soil different tillage	Distinguishing feature	Appearance and description of natural or reduced fragment of ~ 1.5 cm diameter	1
Sq1 Friable Aggregates readily crumble with fingers	Mostly < 6 mm after crumbling	Highly porous Roots throughout the soil			Fine aggregates	The action of breaking the block is enough to reveal them. Large aggregates are composed of smaller ones, held by roots.	0 1 2 3 4 5
Sq2 Intact Aggregates easy to break with one hand	A mixture of porous, rounded aggregates from 2mm - 7 cm. No clods present	Most aggregates are porous Roots throughout the soil			High aggregate porosity	Aggregates when obtained are rounded, very fragile, crumble very easily and are highly porous.	
Sq3 Firm Most aggregates break with one hand	A mixture of porous aggregates from 2mm -10 cm; less than 30% are <1 cm. Some angular, non- porous aggregates (clods) may be present	Macropores and cracks present. Porosity and roots both within aggregates.			Low aggregate porosity	Aggregate fragments are fairly easy to obtain. They have few visible pores and are rounded. Roots usually grow through the aggregates.	10
Sq4 Compact Requires considerable effort to break aggregates with one hand	Mostly large > 10 cm and sub-angular non- porous; horizontal/platy also possible; less than 30% are <7 cm	Few macropores and cracks All roots are clustered in macropores and around aggregates			Distinct macropores	Aggregate fragments are easy to obtain when soil is wet, in cube shapes which are very sharp-edged and show cracks internally.	
Sq5 Very compact Difficult to break up	Mostly large > 10 cm, very few < 7 cm, angular and non- porous	Very low porosity. Macropores may be present. May contain anaerobic zones. Few roots, if any, and restricted to cracks			Grey-blue colour	Aggregate fragments are easy to obtain when soil is wet, although considerable force may be needed. No pores or cracks are visible usually.	

Field x – Root:Shoot


International project; started Aug. 20

Alborada funded

- Soil Microbial Interactions Using Inoculation and Compost Tea
- Mycorrhizal fungi tested with crop in Nigeria & natural development
- Production of waste crop compost tea to reduce nutrient turnover(neem, jatropha & castor)
- Use of biochar to reduce nutrient loss
- Collaboration with African arm of Kent SME supplying inoculum
- Capitalise on previous NIAB project on affordable soil testing

Starting 2018

- Testing in UK and Nigeria
- Maize and Pigeon Pea

Starting Now; SARIC - Resilient and robust crop and livestock production systems

- Soil quality, structure health & function in Arable/E. England rotations
 - Introducing simple grass ley and complex herbal ley into arable rotation for 2 and 3 years
 - Either grazing or moving each treatment
 - Assessing range of soil crop and animal parameters:
 - Yield and crop quality following leys
 - Animal health and yield
 - Soil health and structure (several meaurements)
 - Economic evaluation
 - Farmer interactive and participatory

J. Leake (Sheffield U.) Lydia Smith (NIAB) D. Jones (Bangor U.) L. Norton (CEH) I Patterson (Loughborough U.) A Collins (Rothamsted) S Ullah (Birmingham U)

Restoring soil heath through reintegration of sheep and leys into arable rotations

- Participat industry-i
- Build on 👌

ence-led,

ork (& data

www.innovationfarm.co.uk

twitter @innovationfarm1 @InnovationHub1 @Iydiamjsmith www.InnovationHubUK.co.uk

